Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Article in English | MEDLINE | ID: mdl-38635147

ABSTRACT

The cell membrane protein, dystroglycan, plays a crucial role in connecting the cytoskeleton of a variety of mammalian cells to the extracellular matrix. The α-subunit of dystroglycan (αDG) is characterized by a high level of glycosylation, including a unique O-mannosyl matriglycan. This specific glycosylation is essential for binding of αDG to extracellular matrix ligands effectively. A subset of muscular dystrophies, called dystroglycanopathies, are associated with aberrant, dysfunctional glycosylation of αDG. This defect prevents myocytes from attaching to the basal membrane, leading to contraction-induced injury. Here, we describe a novel Western blot (WB) assay for determining levels of αDG glycosylation in skeletal muscle tissue. The assay described involves extracting proteins from fine needle tibialis anterior (TA) biopsies and separation using SDS-PAGE followed by WB. Glycosylated and core αDG are then detected in a multiplexed format using fluorescent antibodies. A practical application of this assay is demonstrated with samples from normal donors and patients diagnosed with LGMD2I/R9. Quantitative analysis of the WB, which employed the use of a normal TA derived calibration curve, revealed significantly reduced levels of αDG in patient biopsies relative to unaffected TA. Importantly, the assay was able to distinguish between the L276I homozygous patients and a more severe form of clinical disease observed with other FKRP variants. Data demonstrating the accuracy and reliability of the assay are also presented, which further supports the potential utility of this novel assay to monitor changes in ⍺DG of TA muscle biopsies in the evaluation of potential therapeutics.

2.
N Engl J Med ; 390(2): 132-142, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38197816

ABSTRACT

BACKGROUND: Transthyretin amyloid cardiomyopathy is characterized by the deposition of misfolded monomeric transthyretin (TTR) in the heart. Acoramidis is a high-affinity TTR stabilizer that acts to inhibit dissociation of tetrameric TTR and leads to more than 90% stabilization across the dosing interval as measured ex vivo. METHODS: In this phase 3, double-blind trial, we randomly assigned patients with transthyretin amyloid cardiomyopathy in a 2:1 ratio to receive acoramidis hydrochloride at a dose of 800 mg twice daily or matching placebo for 30 months. Efficacy was assessed in the patients who had an estimated glomerular filtration rate of at least 30 ml per minute per 1.73 m2 of body-surface area. The four-step primary hierarchical analysis included death from any cause, cardiovascular-related hospitalization, the change from baseline in the N-terminal pro-B-type natriuretic peptide (NT-proBNP) level, and the change from baseline in the 6-minute walk distance. We used the Finkelstein-Schoenfeld method to compare all potential pairs of patients within strata to generate a P value. Key secondary outcomes were death from any cause, the 6-minute walk distance, the score on the Kansas City Cardiomyopathy Questionnaire-Overall Summary, and the serum TTR level. RESULTS: A total of 632 patients underwent randomization. The primary analysis favored acoramidis over placebo (P<0.001); the corresponding win ratio was 1.8 (95% confidence interval [CI], 1.4 to 2.2), with 63.7% of pairwise comparisons favoring acoramidis and 35.9% favoring placebo. Together, death from any cause and cardiovascular-related hospitalization contributed more than half the wins and losses to the win ratio (58% of all pairwise comparisons); NT-proBNP pairwise comparisons yielded the highest ratio of wins to losses (23.3% vs. 7.0%). The overall incidence of adverse events was similar in the acoramidis group and the placebo group (98.1% and 97.6%, respectively); serious adverse events were reported in 54.6% and 64.9% of the patients. CONCLUSIONS: In patients with transthyretin amyloid cardiomyopathy, the receipt of acoramidis resulted in a significantly better four-step primary hierarchical outcome containing components of mortality, morbidity, and function than placebo. Adverse events were similar in the two groups. (Funded by BridgeBio Pharma; ATTRibute-CM ClinicalTrials.gov number, NCT03860935.).


Subject(s)
Amyloidosis , Cardiomyopathies , Cardiovascular Agents , Prealbumin , Humans , Amyloidosis/drug therapy , Amyloidosis/pathology , Cardiomyopathies/drug therapy , Cardiomyopathies/pathology , Heart , Hospitalization , Prealbumin/drug effects , Prealbumin/therapeutic use , Treatment Outcome , Double-Blind Method , Cardiovascular Agents/adverse effects , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Natriuretic Peptide, Brain/analysis , Functional Status
3.
J Pharmacol Exp Ther ; 388(1): 171-180, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37875310

ABSTRACT

Pantothenate kinase-associated neurodegeneration (PKAN) is characterized by a motor disorder with combinations of dystonia, parkinsonism, and spasticity, leading to premature death. PKAN is caused by mutations in the PANK2 gene that result in loss or reduction of PANK2 protein function. PANK2 is one of three kinases that initiate and regulate coenzyme A biosynthesis from vitamin B5, and the ability of BBP-671, an allosteric activator of pantothenate kinases, to enter the brain and elevate coenzyme A was investigated. The metabolic stability, protein binding, and membrane permeability of BBP-671 all suggest that it has the physical properties required to cross the blood-brain barrier. BBP-671 was detected in plasma, liver, cerebrospinal fluid, and brain following oral administration in rodents, demonstrating the ability of BBP-671 to penetrate the brain. The pharmacokinetic and pharmacodynamic properties of orally administered BBP-671 evaluated in cannulated rats showed that coenzyme A (CoA) concentrations were elevated in blood, liver, and brain. BBP-671 elevation of whole-blood acetyl-CoA served as a peripheral pharmacodynamic marker and provided a suitable method to assess target engagement. BBP-671 treatment elevated brain coenzyme A concentrations and improved movement and body weight in a PKAN mouse model. Thus, BBP-671 crosses the blood-brain barrier to correct the brain CoA deficiency in a PKAN mouse model, resulting in improved locomotion and survival and providing a preclinical foundation for the development of BBP-671 as a potential treatment of PKAN. SIGNIFICANCE STATEMENT: The blood-brain barrier represents a major hurdle for drugs targeting brain metabolism. This work describes the pharmacokinetic/pharmacodynamic properties of BBP-671, a pantothenate kinase activator. BBP-671 crosses the blood-brain barrier to correct the neuron-specific coenzyme A (CoA) deficiency and improve motor function in a mouse model of pantothenate kinase-associated neurodegeneration. The central role of CoA and acetyl-CoA in intermediary metabolism suggests that pantothenate kinase activators may be useful in modifying neurological metabolic disorders.


Subject(s)
Pantothenate Kinase-Associated Neurodegeneration , Mice , Animals , Rats , Pantothenate Kinase-Associated Neurodegeneration/drug therapy , Pantothenate Kinase-Associated Neurodegeneration/genetics , Acetyl Coenzyme A/metabolism , Acetyl Coenzyme A/therapeutic use , Coenzyme A/metabolism , Disease Models, Animal , Phosphotransferases (Alcohol Group Acceptor)/genetics , Brain/metabolism
4.
Clin Pharmacol Drug Dev ; 9(1): 115-129, 2020 01.
Article in English | MEDLINE | ID: mdl-31172685

ABSTRACT

AG10 is a novel, potent, and selective oral transthyretin (TTR) stabilizer being developed to treat TTR amyloidosis (ATTR). This randomized, double-blind, placebo-controlled study evaluated safety, tolerability, pharmacokinetics, and pharmacodynamics (ex vivo stabilization) of orally administered AG10 in healthy adult volunteers. Both mutant and wild-type ATTR are underdiagnosed diseases with limited therapeutic options. As TTR amyloidogenesis is initiated by dissociation of TTR tetramers destabilized due to inherited mutations or aging, AG10 is designed to treat the disease at its source. Four single and three multiple ascending dose levels of AG10 or matching placebo were orally administered. Safety and tolerability were assessed by vital signs, electrocardiogram, adverse events, and clinical laboratory tests. Pharmacokinetics were measured using a validated bioanalytical assay. Pharmacodynamics were assessed via three pharmacodynamic assays of TTR stabilization. AG10 was uniformly well tolerated, and no safety signals of clinical concern were observed. Pharmacokinetic observations included time to maximum concentration <1 hour, dose-dependent maximum concentration and area under the plasma concentration-time curve, low intersubject variability, and half-life ∼25 hr. Complete (>90%) stabilization of TTR was observed across the entire dosing interval at steady state on the highest dose tested. Serum TTR levels, an in vivo reflection of TTR stabilization by AG10, increased from baseline following 12 days of dosing. AG10 appears to be safe and well tolerated in healthy adult volunteers and can completely stabilize TTR across the dosing interval, establishing clinical proof of concept. Based on these data, AG10 has the potential to be a safe and effective treatment for patients with either mutant or wild-type ATTR.


Subject(s)
Benzoates , Pyrazoles , Administration, Oral , Adolescent , Adult , Amyloid Neuropathies, Familial , Benzoates/adverse effects , Benzoates/blood , Benzoates/pharmacokinetics , Benzoates/pharmacology , Double-Blind Method , Fasting/metabolism , Female , Food-Drug Interactions , Healthy Volunteers , Humans , Male , Middle Aged , Prealbumin/analysis , Pyrazoles/adverse effects , Pyrazoles/blood , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Young Adult
5.
J Am Coll Cardiol ; 74(3): 285-295, 2019 07 23.
Article in English | MEDLINE | ID: mdl-30885685

ABSTRACT

BACKGROUND: Transthyretin (TTR) amyloidosis is an underdiagnosed disease caused by destabilization of TTR due to pathogenic mutations or aging. Both pathogenic and protective mutations illuminate mechanisms of disease and potential interventions. AG10 is a selective, oral TTR stabilizer under development for transthyretin amyloidosis cardiomyopathy (ATTR-CM) that mimics a protective TTR mutation. OBJECTIVES: This randomized, double-blind, placebo-controlled study evaluated safety, tolerability, pharmacokinetics, and pharmacodynamics of AG10 in ATTR-CM patients with symptomatic, chronic heart failure. METHODS: ATTR-CM, New York Heart Association functional class II to III subjects (n = 49, mutant or wild-type) were randomized 1:1:1 to AG10 400 mg, AG10 800 mg, or placebo twice daily for 28 days. Safety and tolerability were assessed by clinical and laboratory criteria. AG10 plasma levels were measured. TTR stability was assessed by changes in serum TTR, and 2 established ex vivo assays (fluorescent probe exclusion and Western blot). RESULTS: AG10 treatment was well-tolerated, achieved target plasma concentrations and demonstrated near-complete stabilization of TTR. TTR stabilization was more complete and less variable at the higher dose with stabilization by fluorescent probe exclusion of 92 ± 10% (mean ± SD) at trough and 96 ± 9% at peak (both p < 10-12 vs. placebo). Average serum TTR increased by 36 ± 21% and 51 ± 38% at 400 and 800 mg, respectively (both p < 0.0001 vs. placebo). Baseline serum TTR in treated subjects was below normal in 80% of mutant and 33% of wild-type subjects. AG10 treatment restored serum TTR to the normal range in all subjects. CONCLUSIONS: AG10 has the potential to be a safe and effective treatment for patients with ATTR-CM. A phase 3 trial is ongoing. (Study of AG10 in Amyloid Cardiomyopathy; NCT03458130).


Subject(s)
Amyloid Neuropathies, Familial/drug therapy , Benzoates/therapeutic use , Heart Failure/drug therapy , Pyrazoles/therapeutic use , Aged , Aged, 80 and over , Amyloid Neuropathies, Familial/diagnosis , Benzoates/pharmacology , Double-Blind Method , Female , Heart Failure/diagnosis , Humans , Male , Middle Aged , Pyrazoles/pharmacology
6.
J Med Chem ; 61(17): 7862-7876, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30133284

ABSTRACT

Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is a fatal disease with no available disease-modifying therapies. While pathogenic TTR mutations (TTRm) destabilize TTR tetramers, the T119M variant stabilizes TTRm and prevents disease. A comparison of potency for leading TTR stabilizers in clinic and structural features important for effective TTR stabilization is lacking. Here, we found that molecular interactions reflected in better binding enthalpy may be critical for development of TTR stabilizers with improved potency and selectivity. Our studies provide mechanistic insights into the unique binding mode of the TTR stabilizer, AG10, which could be attributed to mimicking the stabilizing T119M variant. Because of the lack of animal models for ATTR-CM, we developed an in vivo system in dogs which proved appropriate for assessing the pharmacokinetics-pharmacodynamics profile of TTR stabilizers. In addition to stabilizing TTR, we hypothesize that optimizing the binding enthalpy could have implications for designing therapeutic agents for other amyloid diseases.


Subject(s)
Amyloid Neuropathies, Familial/prevention & control , Benzoates/chemistry , Benzoates/pharmacology , Mutation , Prealbumin/chemistry , Prealbumin/genetics , Pyrazoles/chemistry , Pyrazoles/pharmacology , Administration, Oral , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/pathology , Animals , Benzoates/administration & dosage , Biomimetics , Dogs , Entropy , Female , Humans , Male , Models, Molecular , Prealbumin/metabolism , Protein Conformation , Protein Stability , Pyrazoles/administration & dosage , Serum Albumin, Human/metabolism , Thermodynamics
7.
J Clin Pharmacol ; 57(2): 194-210, 2017 02.
Article in English | MEDLINE | ID: mdl-27406873

ABSTRACT

The spleen tyrosine kinase (SYK) regulates immune cell activation in response to engagement of a variety of receptors, making it an intriguing target for the treatment of inflammatory and autoimmune disorders as well as certain B-cell malignancies. We have previously reported on the discovery and preclinical characterization of PRT062607, a potent and highly selective inhibitor of SYK that exhibits robust anti-inflammatory activity in a variety of animal models. Here we present data from our first human studies aimed at characterizing the pharmacokinetics (PK), pharmacodynamics (PD), and safety of PRT062607 in healthy volunteers following single and multiple oral administrations. PRT062607 demonstrated a favorable PK profile and the ability to completely inhibit SYK activity in multiple whole-blood assays. The PD half-life in the more sensitive assays was approximately 24 hours and returned to predose levels by 72 hours. Selectivity for SYK was observed at all dose levels tested. Analysis of the PK/PD relationship indicated an IC50 of 324 nM for inhibition of B-cell antigen receptor-mediated B-cell activation and 205 nM for inhibition of FcεRI-mediated basophil degranulation. PRT062607 was safe and well tolerated across the entire range of doses. Clinical PK/PD was related to in vivo anti-inflammatory activity of PRT062607 in the rat collagen-induced arthritis model, which predicts that therapeutic concentrations may be safely achieved in humans for the treatment of autoimmune disease. PRT062607 has a desirable PK profile and is capable of safely, potently, and selectively suppressing SYK kinase function in humans following once-daily oral dosing.


Subject(s)
Cyclohexylamines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Spleen/drug effects , Spleen/enzymology , Adult , Animals , Arthritis, Experimental/drug therapy , B-Lymphocytes/drug effects , Basophil Degranulation Test , Cyclohexylamines/pharmacokinetics , Dendritic Cells/drug effects , Half-Life , Healthy Volunteers , Humans , Macrophage Activation/drug effects , Male , Protein Kinase Inhibitors/pharmacokinetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacokinetics , Rats , Receptors, Antigen, B-Cell/drug effects , Respiratory Burst/drug effects , Single-Blind Method
8.
Blood Adv ; 1(21): 1827-1838, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-29296829

ABSTRACT

Direct factor Xa (FXa) inhibitors lack a specific reversal agent for emergencies such as major bleeding or urgent surgery. Andexanet alfa, a modified, catalytically inactive, recombinant human FXa derivative, reverses anticoagulant effect by binding and sequestering FXa inhibitors. This original report of safety and dose-finding, phase 1 and 2 randomized, double-blind, placebo-controlled studies, investigated various doses of andexanet in healthy volunteers. Phase 1 evaluated the safety and pharmacokinetics of andexanet (n = 24) or placebo (n = 8). In phase 2, andexanet (n = 36) or placebo (n = 18) was administered following steady-state apixaban dosing (5 mg twice daily for 6 days); safety, pharmacokinetics, and pharmacodynamics were assessed. Andexanet plasma concentration increased proportionally with dose, with rapid elimination (terminal elimination half-life, 4.35-7.5 hours). Following apixaban treatment, andexanet rapidly (≤2 minutes) and dose dependently reduced unbound apixaban concentration vs placebo (51% to 89% vs 5% reduction; all P < .05), decreased anti-FXa activity (67.8% to 95.0% vs 7.1% reduction; all P < .05), and restored thrombin generation in 67% to 100% vs 6% of subjects (all P < .01), maintaining these effects during continuous 45- and 120-minute infusions. Andexanet was well tolerated. Nine subjects had mild/moderate infusion reactions not associated with hemodynamic changes or respiratory compromise that generally resolved without intervention or dose reduction. There were no thrombotic events or other serious safety issues. In conclusion, andexanet reversed apixaban-mediated effects on pharmacodynamic markers of anticoagulation in healthy volunteers within minutes after administration and for the duration of infusion. This trial was registered at www.clinicaltrials.gov as #NCT01758432.

9.
Br J Haematol ; 175(1): 141-53, 2016 10.
Article in English | MEDLINE | ID: mdl-27378309

ABSTRACT

A major driver of the pathophysiology of sickle cell disease (SCD) is polymerization of deoxygenated haemoglobin S (HbS), which leads to sickling and destruction of red blood cells (RBCs) and end-organ damage. Pharmacologically increasing the proportion of oxygenated HbS in RBCs may inhibit polymerization, prevent sickling and provide long term disease modification. We report that GBT440, a small molecule which binds to the N-terminal α chain of Hb, increases HbS affinity for oxygen, delays in vitro HbS polymerization and prevents sickling of RBCs. Moreover, in a murine model of SCD, GBT440 extends the half-life of RBCs, reduces reticulocyte counts and prevents ex vivo RBC sickling. Importantly, oral dosing of GBT440 in animals demonstrates suitability for once daily dosing in humans and a highly selective partitioning into RBCs, which is a key therapeutic safety attribute. Thus, GBT440 has the potential for clinical use as a disease-modifying agent in sickle cell patients.


Subject(s)
Anemia, Sickle Cell/metabolism , Antisickling Agents/pharmacology , Cell Survival/drug effects , Erythrocytes, Abnormal/drug effects , Erythrocytes, Abnormal/metabolism , Hemoglobin, Sickle/metabolism , Oxygen/metabolism , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/drug therapy , Animals , Antisickling Agents/chemistry , Antisickling Agents/pharmacokinetics , Blood Gas Analysis , Disease Models, Animal , Hemoglobin, Sickle/chemistry , Humans , Mice , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/metabolism , Protein Binding
10.
J Innate Immun ; 7(1): 59-73, 2015.
Article in English | MEDLINE | ID: mdl-25277753

ABSTRACT

We report that particles of ß-glucan, one of the surface components of yeasts, are powerful inducers of neutrophil extracellular trap (NET) formation in human neutrophils. ß-Glucan triggered a prolonged phosphorylation of Src family kinases and Syk that were suppressed by the Src family inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3, 4-d] pyrimidine (PP2) and a novel Syk inhibitor, PRT-060318, respectively. PP2 and PRT-060318 also inhibited ß-glucan-induced NET formation and reactive oxygen species (ROS) generation, suggesting that both responses are triggered by a Src/Syk-regulated signaling pathway. Given that the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) markedly inhibited NET formation, our findings suggest that ROS are required for the full-blown formation of NETs in response to ß-glucan particles. Contrary to ß-glucan, ROS generation triggered by phorbol myristate acetate (PMA) was unaffected by PP2 and PRT-060318, but these compounds, as well as DPI, suppressed Src/Syk phosphorylation triggered by PMA. Whereas PP2 had no effect on PMA-induced NET formation, PRT-060318 had a significant, albeit partial, inhibitory effect, thus suggesting that ROS induce NET formation in part via activation of Syk. These findings were substantiated by the evidence that neutrophils from mice with the conditional deletion of Syk were defective in formation of NETs in response to ß-glucan.


Subject(s)
Extracellular Traps/immunology , Intracellular Signaling Peptides and Proteins/immunology , Neutrophils/immunology , Protein-Tyrosine Kinases/immunology , Signal Transduction/immunology , src-Family Kinases/immunology , Animals , Carcinogens/pharmacology , Cyclohexylamines/pharmacology , Enzyme Activation/drug effects , Enzyme Activation/genetics , Enzyme Activation/immunology , Extracellular Traps/genetics , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Pyrimidines/pharmacology , Reactive Oxygen Species/immunology , Signal Transduction/drug effects , Signal Transduction/genetics , Syk Kinase , Tetradecanoylphorbol Acetate/pharmacology , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/genetics
11.
J Pharmacol Exp Ther ; 351(3): 538-48, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25253883

ABSTRACT

The heterogeneity and severity of certain autoimmune diseases and B-cell malignancies warrant simultaneous targeting of multiple disease-relevant signaling pathways. Dual inhibition of spleen tyrosine kinase (SYK) and Janus kinase (JAK) represents such a strategy and may elicit several benefits relative to selective kinase inhibition, such as gaining control over a broader array of disease etiologies, reducing probability of selection for bypass disease mechanisms, and the potential that an overall lower level suppression of individual targets may be sufficient to modulate disease activity. To this end, we provide data on the discovery and preclinical development of PRT062070 [4-(cyclopropylamino)-2-({4-[4-(ethylsulfonyl)piperazin-1-yl]phenyl}amino)pyrimidine-5-carboxamide hydrochloride], an orally active kinase inhibitor that demonstrates activity against SYK and JAK. Cellular assays demonstrated specific inhibitory activity against signaling pathways that use SYK and JAK1/3. Limited inhibition of JAK2 was observed, and PRT062070 did not inhibit phorbol 12-myristate 13-acetate-mediated signaling or activation in B and T cells nor T-cell antigen receptor-mediated signaling in T cells, providing evidence for selectivity of action. Potent antitumor activity was observed in a subset of B-cell lymphoma cell lines. After oral dosing, PRT062070 suppressed inflammation and autoantibody generation in a rat collagen-induced arthritis model and blocked B-cell activation and splenomegaly in a mouse model of chronic B-cell antigen receptor stimulation. PRT062070 is currently under evaluation in a phase I dose escalation study in patients with B-cell leukemia and lymphoma (NCT01994382), with proof-of-concept studies in humans planned to assess therapeutic potential in autoimmune and malignant diseases.


Subject(s)
Arthritis, Experimental/drug therapy , Autoimmunity/drug effects , Disease Models, Animal , Lymphoma, B-Cell/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Sulfones/therapeutic use , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Autoimmunity/physiology , Cattle , Dose-Response Relationship, Drug , Female , Humans , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Mice , Mice, Inbred BALB C , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Random Allocation , Rats , Rats, Inbred Lew , Sulfones/chemistry , Sulfones/pharmacology , Treatment Outcome
12.
Indian J Endocrinol Metab ; 17(1): 174-6, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23776877

ABSTRACT

Hypothyroidism presenting as recurrent hypokalemic paralysis is rare in the literature. This transient and episodic neurological condition is commonly associated with thyrotoxicosis. We report a case of young female admitted with recurrent paralytic attacks since last 1 year. She had no symptom of hypothyroidism. She had weakness of all four limbs, delayed relaxation of ankle jerks, and normal higher mental function. There was no enlargement of thyroid. Serum potassium level ranged from 1.6 to 3.2 meq/L during attack with high serum creatine phosphokinase level. Electromyography was normal. The patient was diagnosed having chronic thyroiditis with high thyroid-stimulating hormone and thyroid-related antibodies. Follow up shows satisfactory result with thyroxine replacement. It is an extremely rare and unusual presentation of hypothyroidism, probably the fourth reported case of hypothyroidism with hypokalemic paralysis, to the best of our knowledge.

13.
Indian J Endocrinol Metab ; 17(2): 304-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23776908

ABSTRACT

CONTEXT: Polycystic ovarian syndrome (PCOS), the most common endocrinopathy of women in the reproductive age group seems to be adversely affected by associated thyroid dysfunction. Both pose independent risks of ovarian failure and pregnancy related complications. AIMS: The present study from Eastern India is, therefore, aimed to investigate the prevalence and etiology of different thyroid disorders in PCOS subjects. SETTINGS AND DESIGN: Cross-sectional hospital based survey-single centre observational case-control study. MATERIALS AND METHODS: This prospective single-center study recruited 106 female patients with hypertrichosis and menstrual abnormality among which 80 patients were defined as having PCOS according to the revised 2003 Rotterdam criteria and comprised the study population. Another 80 age-matched female subjects were studied as the control population. Thyroid function and morphology were evaluated by measurement of serum thyroid stimulating hormone (TSH), free thyroxine levels (free T3 and free T4), anti-thyroperoxidase antibody (anti-TPO Ab), clinical examination and ultrasound (USG) of thyroid gland. STATISTICAL ANALYSIS USED: It was done by Student's t-test and Chi-square test using appropriate software (SPSS version 19). RESULTS: This case-control study revealed statistically significant higher prevalence of autoimmune thyroiditis, detected in 18 patients (22.5% vs. 1.25% of control) as evidenced by raised anti-TPO antibody levels (means 28.037 ± 9.138 and 25.72 ± 8.27 respectively; P = 0.035). PCOS patients were found to have higher mean TSH level than that of the control group (4.547 ± 2.66 and 2.67 ± 3.11 respectively; P value < 0.05). There was high prevalence of goiter among PCOS patients (27.5% vs. 7.5% of control, P value > 0.001). On thyroid USG a significantly higher percentage of PCOS patients (12.5%; controls 2.5%) had hypoechoic USG pattern also compatible with the diagnosis of autoimmune thyroiditis. CONCLUSIONS: High prevalence of thyroid disorders in PCOS patients thus points towards the importance of early correction of hypothyroidism in the management of infertility associated with PCOS.

14.
Eur Heart J ; 34(20): 1498-505, 2013 May.
Article in English | MEDLINE | ID: mdl-23487517

ABSTRACT

AIMS: Patients with atrial fibrillation (AF) are at increased risk of stroke. Betrixaban is a novel oral factor Xa inhibitor administered once daily, mostly excreted unchanged in the bile and with low (17%) renal excretion. METHODS AND RESULTS: Patients with AF and more than one risk factor for stroke were randomized to one of three blinded doses of betrixaban (40, 60, or 80 mg once daily) or unblinded warfarin, adjusted to an international normalized ratio of 2.0-3.0. The primary outcome was major or clinically relevant non-major bleeding. The mean follow-up was 147 days. Among 508 patients randomized, the mean CHADS2 score was 2.2; 87% of patients had previously received vitamin K antagonist therapy. The time in therapeutic range on warfarin was 63.4%. There were one, five, five, and seven patients with a primary outcome on betrixaban 40, 60, 80 mg daily, or warfarin, respectively. The rate of the primary outcome was lowest on betrixaban 40 mg (hazard ratio compared with warfarin = 0.14, exact stratified log-rank P-value 0.04, unadjusted for multiple testing). Rates of the primary outcome with betrixaban 60 or 80 mg were more similar to those of wafarin. Two ischaemic strokes occurred, one each on betrixaban 60 and 80 mg daily. There were two vascular deaths, one each on betrixaban 40 mg and warfarin. Betrixaban was associated with higher rates of diarrhoea than warfarin. CONCLUSION: Betrixaban was well tolerated and had similar or lower rates of bleeding compared with well-controlled warfarin in patients with AF at risk for stroke.


Subject(s)
Anticoagulants/administration & dosage , Atrial Fibrillation/complications , Benzamides/administration & dosage , Pyridines/administration & dosage , Stroke/prevention & control , Warfarin/administration & dosage , Aged , Anticoagulants/pharmacokinetics , Benzamides/pharmacokinetics , Dose-Response Relationship, Drug , Female , Fibrin Fibrinogen Degradation Products/metabolism , Hemorrhage/chemically induced , Humans , Male , Pyridines/pharmacokinetics , Treatment Outcome , Warfarin/pharmacokinetics
15.
Nat Med ; 19(4): 446-51, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23455714

ABSTRACT

Inhibitors of coagulation factor Xa (fXa) have emerged as a new class of antithrombotics but lack effective antidotes for patients experiencing serious bleeding. We designed and expressed a modified form of fXa as an antidote for fXa inhibitors. This recombinant protein (r-Antidote, PRT064445) is catalytically inactive and lacks the membrane-binding γ-carboxyglutamic acid domain of native fXa but retains the ability of native fXa to bind direct fXa inhibitors as well as low molecular weight heparin-activated antithrombin III (ATIII). r-Antidote dose-dependently reversed the inhibition of fXa by direct fXa inhibitors and corrected the prolongation of ex vivo clotting times by such inhibitors. In rabbits treated with the direct fXa inhibitor rivaroxaban, r-Antidote restored hemostasis in a liver laceration model. The effect of r-Antidote was mediated by reducing plasma anti-fXa activity and the non-protein bound fraction of the fXa inhibitor in plasma. In rats, r-Antidote administration dose-dependently and completely corrected increases in blood loss resulting from ATIII-dependent anticoagulation by enoxaparin or fondaparinux. r-Antidote has the potential to be used as a universal antidote for a broad range of fXa inhibitors.


Subject(s)
Anticoagulants/antagonists & inhibitors , Antidotes/pharmacology , Factor Xa Inhibitors , Recombinant Proteins/pharmacology , Animals , Benzamides/antagonists & inhibitors , Dose-Response Relationship, Drug , Enoxaparin/antagonists & inhibitors , Factor Xa/pharmacology , Fondaparinux , Hemorrhage/drug therapy , Hemostasis/drug effects , Male , Mice , Mice, Inbred C57BL , Morpholines/antagonists & inhibitors , Polysaccharides/antagonists & inhibitors , Pyrazoles/antagonists & inhibitors , Pyridines/antagonists & inhibitors , Pyridones/antagonists & inhibitors , Rabbits , Rats , Rats, Sprague-Dawley , Rivaroxaban , Thiophenes/antagonists & inhibitors
16.
Blood ; 121(11): 2127-34, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23325830

ABSTRACT

Low molecular weight heparin (LMWH) is being tested as an experimental drug for improving pregnancy outcome in women with inherited thrombophilia and placenta-mediated pregnancy complications, such as recurrent pregnancy loss. The role of thrombotic processes in these disorders remains unproven, and the issue of antithrombotic prophylaxis is intensely debated. Using a murine model of factor V Leiden-associated placental failure, we show that treatment of the mother with LMWH allows placental development to proceed and affords significant protection from fetal loss. Nonetheless, the therapeutic effect of LMWH is not replicated by anticoagulation; fondaparinux and a direct Xa inhibitor, C921-78, achieve anticoagulation similar to LMWH but produce little or no improvement in pregnancy outcome. Genetic attenuation of maternal platelet aggregation is similarly ineffective. In contrast, even a partial loss of thrombin sensitivity of maternal platelets protects pregnancies. Neonates born from these pregnancies are growth retarded, suggesting that placental function is only partially restored. The placentae are smaller but do not reveal any evidence of thrombosis. Our data demonstrate an anticoagulation-independent role of LMWH in protecting pregnancies and provide evidence against the involvement of thrombotic processes in thrombophilia-associated placental failure. Importantly, thrombin-mediated maternal platelet activation remains central in the mechanism of placental failure.


Subject(s)
Blood Coagulation/drug effects , Disease Models, Animal , Factor V/physiology , Heparin/therapeutic use , Mice, Knockout , Placenta Diseases/drug therapy , Placenta Diseases/etiology , Pregnancy, High-Risk , Animals , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Blood Coagulation/genetics , Embryo, Mammalian , Factor V/genetics , Female , Heparin/pharmacology , Humans , Mice , Mice, Inbred C57BL , Placenta Diseases/genetics , Pregnancy , Pregnancy Complications, Hematologic/drug therapy , Pregnancy Complications, Hematologic/etiology , Pregnancy Complications, Hematologic/genetics , Pregnancy, High-Risk/blood
17.
Pharmacol Res Perspect ; 1(2): e00016, 2013 Dec.
Article in English | MEDLINE | ID: mdl-25505569

ABSTRACT

BACKGROUND: Selective disruption of the spleen tyrosine kinase (Syk) represents a novel strategy to control B-cell functional responses by inhibition of B-cell antigen receptor (BCR) signaling. PRT062607 (P505-15) is a highly selective small molecule Syk inhibitor that potently suppresses B-cell function in human and rodent blood, and reduces inflammation in rodent models of rheumatoid arthritis (RA). AIMS: In this study, we sought to determine the potency of Syk inhibition by PRT062607 in whole blood from RA patients, and elucidate covariates that affect the potency of immune-regulation by this compound. MATERIALS AND METHODS: Whole blood was collected from 30 patients diagnosed with RA as part of a single-center outpatient study. Disease severity, serum protein markers of inflammation, and co-medications were related to each other, and to PRT062607 activity in ex vivo Syk-mediated immune function assays. RESULTS: We report here that PRT062607 exhibited greater potency in suppressing BCR mediated B-cell functional responses in whole blood from RA patients who received stable methotrexate (MTX) therapy. We demonstrate that the B-cell functional response to BCR ligation is influenced by cytokines and JAK/STAT signaling. DISCUSSION: MTX is a known cytokine modulating agent, and this mechanism may act in concert with PRT062607 to control B-cell function. CONCLUSION: These data have important implications for the co-administration of Syk inhibitors and MTX for the treatment of RA.

18.
J Pharmacol Exp Ther ; 344(2): 378-87, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23220742

ABSTRACT

B-cell receptor (BCR) associated kinases including spleen tyrosine kinase (SYK) contribute to the pathogenesis of B-cell malignancies. SYK is persistently phosphorylated in a subset of non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL), and SYK inhibition results in abrogation of downstream kinase activity and apoptosis. P505-15 (also known as PRT062607) is a novel, highly selective, and orally bioavailable small molecule SYK inhibitor (SYK IC(50) = 1 nM) with anti-SYK activity that is at least 80-fold greater than its affinity for other kinases. We evaluated the preclinical characteristics of P505-15 in models of NHL and CLL. P505-15 successfully inhibited SYK-mediated B-cell receptor signaling and decreased cell viability in NHL and CLL. Oral dosing in mice prevented BCR-mediated splenomegaly and significantly inhibited NHL tumor growth in a xenograft model. In addition, combination treatment of primary CLL cells with P505-15 plus fludarabine produced synergistic enhancement of activity at nanomolar concentrations. Our findings support the ongoing development of P505-15 as a therapeutic agent for B-cell malignancies. A dose finding study in healthy volunteers has been completed.


Subject(s)
Antineoplastic Agents/pharmacology , B-Lymphocytes/drug effects , Cyclohexylamines/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lymphoma, Non-Hodgkin/drug therapy , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Vidarabine/analogs & derivatives , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , B-Lymphocytes/enzymology , B-Lymphocytes/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cyclohexylamines/administration & dosage , Cyclohexylamines/pharmacokinetics , Cyclohexylamines/therapeutic use , Dose-Response Relationship, Drug , Drug Synergism , Flow Cytometry , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoma, Non-Hodgkin/enzymology , Lymphoma, Non-Hodgkin/pathology , Mice , Mice, Inbred BALB C , Mice, SCID , Phosphorylation , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Spleen/drug effects , Spleen/enzymology , Syk Kinase , Vidarabine/administration & dosage , Vidarabine/pharmacokinetics , Vidarabine/pharmacology , Vidarabine/therapeutic use , Xenograft Model Antitumor Assays
19.
Expert Opin Pharmacother ; 14(1): 5-13, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23216423

ABSTRACT

OBJECTIVE: To evaluate the effects of the anticoagulant betrixaban on individual heart rate-corrected QT (QTcI). RESEARCH DESIGN AND METHODS: Ninety-six healthy adults were randomly assigned to single-dose betrixaban 80 and 140 mg (therapeutic and supratherapeutic doses, respectively), placebo, and moxifloxacin 400 mg (positive control) in a four-period crossover study. Electrocardiograms were recorded at pre-dose and post-dose hours 1, 2, 3, 4, 5, 6, 8, 12, 16 and 24. MAIN OUTCOMES MEASURES: An analysis of covariance determined the placebo-corrected, time-matched mean change from baseline QTcI at the 95% upper confidence interval (UCI; one-sided). The pre-specified clinically significant change for betrixaban-treated groups was > 10 ms (95% UCI, one-sided). Subjects were monitored for safety and tolerability. RESULTS: Mean QTcI change was < 10 ms for both betrixaban groups at all time points; expected changes were observed for moxifloxacin, establishing assay sensitivity. Correlation between betrixaban plasma concentration and QTcI duration confirmed the absence of effect on QT. CONCLUSIONS: Betrixaban at therapeutic and supratherapeutic doses did not cause clinically relevant changes in QTcI intervals or other electrocardiographic parameters. Betrixaban was well tolerated.


Subject(s)
Anticoagulants/therapeutic use , Benzamides/therapeutic use , Electrocardiography/drug effects , Heart Rate/drug effects , Long QT Syndrome/prevention & control , Pyridines/therapeutic use , Administration, Oral , Adolescent , Adult , Anti-Bacterial Agents/adverse effects , Anticoagulants/adverse effects , Aza Compounds/adverse effects , Benzamides/adverse effects , Cross-Over Studies , Double-Blind Method , Female , Fluoroquinolones , Humans , Male , Middle Aged , Moxifloxacin , Pyridines/adverse effects , Quinolines/adverse effects , Young Adult
20.
J Biol Chem ; 288(7): 5127-35, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23264619

ABSTRACT

CLEC-2 is a member of new family of C-type lectin receptors characterized by a cytosolic YXXL downstream of three acidic amino acids in a sequence known as a hemITAM (hemi-immunoreceptor tyrosine-based activation motif). Dimerization of two phosphorylated CLEC-2 molecules leads to recruitment of the tyrosine kinase Syk via its tandem SH2 domains and initiation of a downstream signaling cascade. Using Syk-deficient and Zap-70-deficient cell lines we show that hemITAM signaling is restricted to Syk and that the upstream triacidic amino acid sequence is required for signaling. Using surface plasmon resonance and phosphorylation studies, we demonstrate that the triacidic amino acids are required for phosphorylation of the YXXL. These results further emphasize the distinct nature of the proximal events in signaling by hemITAM relative to ITAM receptors.


Subject(s)
Blood Platelets/metabolism , Tyrosine/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Cytosol/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Kinetics , Lectins, C-Type/chemistry , Lectins, C-Type/metabolism , Membrane Glycoproteins/metabolism , Models, Biological , Molecular Sequence Data , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Sequence Homology, Amino Acid , Signal Transduction , Surface Plasmon Resonance , Syk Kinase , Viper Venoms/chemistry , ZAP-70 Protein-Tyrosine Kinase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...